How to Get CAS Action Documentation within Python-swat

There is publically available documentation, but sometimes you just don't want to leave Python.
Copyright (c) 2017 SAS Institute Inc.


In [1]:
# Load the swat package and turn off note messages
import swat
swat.options.cas.print_messages = False

# set the connection: host, port, username, password
s = swat.CAS(host, port, username, password)

What are the default loaded actionsets?


In [2]:
# list all loaded actionsets
s.builtins.actionSetInfo()


Out[2]:
§ setinfo
Action set information
actionset label loaded extension build_time portdate
0 accessControl Access Controls 1 tkacon 2016-09-07 18:41:50 V.03.01M0P09072016
1 accessControl Access Controls 1 casmeta 2016-09-07 18:41:50 V.03.01M0P09072016
2 builtins System 1 tkcasablt 2016-09-07 18:41:50 V.03.01M0P09072016
3 configuration Server Properties 1 tkcascfg 2016-09-07 18:41:47 V.03.01M0P09072016
4 dataPreprocess Data Preprocess 1 tktrans 2016-09-07 18:41:49 V.03.01M0P09072016
5 dataStep DATA Step 1 datastep 2016-09-07 18:41:27 V.03.01M0P09072016
6 percentile Percentile 1 tkcasptl 2016-09-07 18:41:49 V.03.01M0P09072016
7 search Search 1 casidx 2016-09-07 18:12:22 V.03.01M0P09072016
8 session Session Methods 1 tkcsessn 2016-09-07 18:41:49 V.03.01M0P09072016
9 sessionProp Session Properties 1 tkcstate 2016-09-07 18:41:49 V.03.01M0P09072016
10 simple Analytics 1 tkimstat 2016-09-07 18:41:49 V.03.01M0P09072016
11 table Tables 1 tkcastab 2016-09-13 12:24:04 V.03.01M0P09072016

elapsed 0.00676s · user 0.007s · sys 0.007s · mem 0.277MB

What are the available actions for each actionset?


In [3]:
# list each actionset with available actions as an ordered dict
s.help()


Out[3]:
§ accessControl
name description
0 assumeRole Assumes a role
1 dropRole Relinquishes a role
2 showRolesIn Shows the currently active role
3 showRolesAllowed Shows the roles that a user is a member of
4 isInRole Shows whether a role is assumed
5 isAuthorized Shows whether access is authorized
6 isAuthorizedActions Shows whether access is authorized to actions
7 isAuthorizedTables Shows whether access is authorized to tables
8 isAuthorizedColumns Shows whether access is authorized to columns
9 listAllPrincipals Lists all principals that have explicit access...
10 whatIsEffective Lists effective access and explanations (Origins)
11 listAcsData Lists access controls for caslibs, tables, and...
12 listAcsActionSet Lists access controls for an action or action set
13 repAllAcsCaslib Replaces all access controls for a caslib
14 repAllAcsTable Replaces all access controls for a table
15 repAllAcsColumn Replaces all access controls for a column
16 repAllAcsActionSet Replaces all access controls for an action set
17 repAllAcsAction Replaces all access controls for an action
18 updSomeAcsCaslib Adds, deletes, and modifies some access contro...
19 updSomeAcsTable Adds, deletes, and modifies some access contro...
20 updSomeAcsColumn Adds, deletes, and modifies some access contro...
21 updSomeAcsActionSet Adds, deletes, and modifies some access contro...
22 updSomeAcsAction Adds, deletes, and modifies some access contro...
23 remAllAcsData Removes all access controls for a caslib, tabl...
24 remAllAcsActionSet Removes all access controls for an action set ...
25 operTableMd Adds, deletes, and modifies table metadata
26 operColumnMd Adds, deletes, and modifies column metadata
27 operActionSetMd Adds, deletes, and modifies action set metadata
28 operActionMd Adds, deletes, and modifies action metadata
29 operAdminMd Assigns users and groups to roles and modifies...
30 listMetadata Lists the metadata for caslibs, tables, column...
31 persistMetadata Persists the access control metadata
32 createBackup Creates a backup if one is not in progress
33 completeBackup Flags a backup as complete
34 operBWPaths Configures a blacklist or whitelist of paths
35 deleteBWList Deletes a blacklist or a whitelist

§ builtins
name description
0 addNode Adds a machine to the server
1 removeNode Remove one or more machines from the server
2 help Shows the parameters for an action or lists al...
3 listNodes Shows the host names used by the server
4 loadActionSet Loads an action set for use in this session
5 installActionSet Loads an action set in new sessions automatically
6 log Shows and modifies logging levels
7 queryActionSet Shows whether an action set is loaded
8 queryName Checks whether a name is an action or action s...
9 reflect Shows detailed parameter information for an ac...
10 serverStatus Shows the status of the server
11 about Shows the status of the server
12 shutdown Shuts down the server
13 getUsers Shows the users from the authentication provider
14 getGroups Shows the groups from the authentication provider
15 userInfo Shows the user information for your connection
16 actionSetInfo Shows the build information from loaded action...
17 history Shows the actions that were run in this session
18 casCommon Provides parameters that are common to many ac...
19 ping Sends a single request to the server to confir...
20 echo Prints the supplied parameters to the client log
21 modifyQueue Modifies the action response queue settings
22 getLicenseInfo Shows the license information for a SAS product
23 refreshLicense Refresh SAS license information from a file
24 httpAddress Shows the HTTP address for the server monitor

§ configuration
name description
0 getServOpt displays the value of a server option
1 listServOpts Displays the server options and server values

§ dataPreprocess
name description
0 rustats Computes robust univariate statistics, central...
1 impute Performs data matrix (variable) imputation
2 outlier Performs outlier detection and treatment
3 binning Performs unsupervised variable discretization
4 discretize Performs supervised and unsupervised variable ...
5 histogram Generates histogram bins and simple bin-based ...
6 transform Performs pipelined variable imputation, outlie...
7 kde Computes kernel density estimation

§ dataStep
name description
0 runCode Runs DATA step code

§ percentile
name description
0 percentile Calculate quantiles and percentiles
1 boxPlot Calculate quantiles, high and low whiskers, an...
2 assess Assess and compare models

§ search
name description
0 searchIndex Searches for a query against an index and retr...
1 searchAggregate Aggregates certain fields in a table that is u...
2 valueCount value count for multiple fields
3 buildIndex Creates an empty index using a schema (the fir...
4 getSchema Gets the schema of an index
5 appendIndex Loads data to an index after the buildIndex ac...
6 deleteDocuments Delete a portion of documents from index

§ session
name description
0 listSessions Displays a list of the sessions on the server
1 addNodeStatus Lists details about machines currently being a...
2 timeout Changes the time-out for a session
3 endSession Ends the current session
4 sessionId Displays the name and UUID of the current session
5 sessionName Changes the name of the current session
6 sessionStatus Displays the status of the current session
7 listresults Lists the saved results for a session
8 batchresults Change current action to batch results
9 fetchresult Fetch the specified saved result for a session
10 flushresult Flush the saved result for this session
11 setLocale Changes the locale for the current session
12 metrics Displays the metrics for each action after it ...

§ sessionProp
name description
0 setSessOpt Sets a session option
1 getSessOpt Displays the value of a session option
2 listSessOpts Displays the session options and session values
3 addFmtLib Adds a format library
4 listFmtLibs Lists the format libraries that are associated...
5 setFmtSearch Sets the format libraries to search
6 listFmtSearch Shows the format library search order
7 dropFmtLib Drops a format library from global scope for a...
8 deleteFormat Deletes a format from a format library
9 addFormat Adds a format to a format library
10 listFmtValues Shows the values for a format
11 saveFmtLib Saves a format library
12 promoteFmtLib Promotes a format library to global scope for ...
13 listFmtRanges Displays the range information for a format

§ simple
name description
0 mdSummary Calculates multidimensional summaries of numer...
1 numRows Shows the number of rows in a Cloud Analytic S...
2 summary Generates descriptive statistics of numeric va...
3 correlation Generates a matrix of Pearson product-moment c...
4 regression Performs a linear regression up to 3rd-order p...
5 crossTab Performs one-way or two-way tabulations
6 distinct Computes the distinct number of values of the ...
7 topK Returns the top-K and bottom-K distinct values...
8 groupBy Builds BY groups in terms of the variable valu...
9 freq Generates a frequency distribution for one or ...
10 paraCoord Generates a parallel coordinates plot of the v...

§ table
name description
0 view Creates a view from files or tables
1 attribute Manages extended table attributes
2 upload Transfers binary data to the server to create ...
3 loadTable Loads a table from a caslib's data source
4 tableExists Checks whether a table has been loaded
5 columnInfo Shows column information
6 fetch Fetches rows from a table or view
7 save Saves a table to a caslib's data source
8 addTable Add a table by sending it from the client to t...
9 tableInfo Shows information about a table
10 tableDetails Get detailed information about a table
11 dropTable Drops a table
12 deleteSource Delete a table or file from a caslib's data so...
13 fileInfo Lists the files in a caslib's data source
14 promote Promote a table to global scope
15 addCaslib Adds a new caslib to enable access to a data s...
16 dropCaslib Drops a caslib
17 caslibInfo Shows caslib information
18 queryCaslib Checks whether a caslib exists
19 partition Partitions a table
20 recordCount Shows the number of rows in a Cloud Analytic S...
21 loadDataSource Loads one or more data source interfaces
22 update Updates rows in a table

elapsed 0.0069s · user 0.004s · sys 0.005s · mem 0.192MB

I see an action that I need, how do I see the inputs?


In [4]:
# session.actionset.action
help(s.dataPreprocess.impute)


Help on datapreprocess.Impute in module swat.cas.actions object:

class datapreprocess.Impute(CASAction)
 |  Performs data matrix (variable) imputation
 |  
 |  Parameters
 |  ----------
 |  table : dict or CASTable
 |      specifies the table name, caslib, and other common parameters.
 |  
 |      table.name : string or CASTable
 |          specifies the name of the table to use.
 |  
 |      table.caslib : string, optional
 |          specifies the caslib containing the table that you want to use
 |          with the action. By default, the active caslib is used. Specify a
 |          value only if you need to access a table from a different caslib.
 |  
 |      table.where : string, optional
 |          specifies an expression for subsetting the input data.
 |  
 |      table.groupby : list of dicts, optional
 |          specifies the names of the variables to use for grouping
 |          results.
 |  
 |          table.groupby[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.groupby[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.groupby[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.groupby[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.groupby[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.groupby[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |      table.orderby : list of dicts, optional
 |          specifies the variables to use for ordering observations within
 |          partitions. This parameter applies to partitioned tables or it
 |          can be combined with groupBy variables when groupByMode is set to
 |          REDISTRIBUTE.
 |  
 |          table.orderby[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.orderby[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.orderby[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.orderby[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.orderby[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.orderby[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |      table.computedvars : list of dicts, optional
 |          specifies the names of the computed variables to create. Specify
 |          an expression for each variable in the computedVarsProgram
 |          parameter.
 |  
 |          table.computedvars[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.computedvars[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.computedvars[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.computedvars[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.computedvars[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.computedvars[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |      table.computedvarsprogram : string, optional
 |          specifies an expression for each computed variable that you
 |          include in the computedVars parameter.
 |  
 |      table.groupbymode : string, optional
 |          specifies how the server creates groups.
 |          Default: NOSORT
 |          Values: NOSORT, REDISTRIBUTE
 |  
 |      table.computedondemand : boolean, optional
 |          when set to True, the computed variables are created when the
 |          table is loaded instead of when the action begins.
 |          Default: False
 |  
 |      table.singlepass : boolean, optional
 |          when set to True, the data does not create a transient table in
 |          the server. Setting this parameter to True can be efficient, but
 |          the data might not have stable ordering upon repeated runs.
 |          Default: False
 |  
 |      table.importoptions : dict, optional
 |          specifies the settings for reading a table from a data source.
 |  
 |          table.importoptions.filetype : string
 |              Default: auto
 |              Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                      esp, lasr, basesas, mva, xls, fmt
 |  
 |      table.ondemand : boolean, optional
 |          when set to True, table access is less aggressive with virtual
 |          memory use.
 |          Default: True
 |  
 |      table.vars : list of dicts, optional
 |          specifies the variables to use in the action.
 |  
 |          table.vars[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.vars[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.vars[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.vars[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.vars[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.vars[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |  methodcontinuous : string, optional
 |      specifies the imputation technique for continuous variables. Be
 |      aware that you can specify numeric variables as nominal using the
 |      nomVarsIndices parameter.
 |      Default: MEAN
 |      Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |  
 |  methodnominal : string, optional
 |      specifies the imputation technique for nominal variables.
 |      Default: MODE
 |      Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |  
 |  inputs : list of dicts, optional
 |      specifies the variables to use for the analysis. You can specify a
 |      subset of the variables from the input table.
 |  
 |      inputs[*].name : string
 |          specifies the name for the variable.
 |  
 |      inputs[*].label : string, optional
 |          specifies the descriptive label for the variable.
 |  
 |      inputs[*].formattedlength : int32, optional
 |          specifies the format field length plus the format precision
 |          length.
 |          Default: 0
 |  
 |      inputs[*].format : string, optional
 |          specifies the format to apply to the variable.
 |  
 |      inputs[*].nfl : int32, optional
 |          specifies the format field length.
 |          Default: 0
 |  
 |      inputs[*].nfd : int32, optional
 |          specifies the format precision length.
 |          Default: 0
 |  
 |  nnominalvars : int32, optional
 |      specifies to treat the last nNomVars variables as nominal if you do
 |      not provide a value for the nomVarsIndices parameter.
 |      Default: 0
 |      Note: Value range is 0 < n < 2147483647
 |  
 |  nominalvarsindices : list, optional
 |      specifies the indices of the variables to treat as nominal
 |      variables.
 |      Default: []
 |      Note: Value range is 0 < n < inf
 |  
 |  freq : string, optional
 |      specifies the frequency variable.
 |  
 |  weight : string, optional
 |      specifies the weight variable.
 |  
 |  seed : int32, optional
 |      specifies a seed value. The seed is used to generate random values.
 |      Default: 0
 |  
 |  minrandom : double, optional
 |      specifies the minimum random number to generate.
 |      Default: 0.0
 |  
 |  maxrandom : double, optional
 |      specifies the maximum random number to generate.
 |      Default: 0.0
 |  
 |  percentiledefinition : int32, optional
 |      specifies the percentile definition to use. The definitions are
 |      numbered 1 to 5. The default value, 0, specifies not to use a
 |      percentile definition.
 |      Default: 6
 |      Note: Value range is 1 <= n <= 6
 |  
 |  percentilemaxiterations : int32, optional
 |      specifies the maximum number of iterations for percentile
 |      computation.
 |      Default: 0
 |  
 |  percentiletolerance : double, optional
 |      specifies the tolerance for percentile computation.
 |      Default: 1e-05
 |  
 |  valuescontinuous : list, optional
 |      specifies a list of double values for imputation for the continuous
 |      variables.
 |      Default: []
 |  
 |  valuesnominal : list, optional
 |      specifies a list of string values for imputation for the nominal
 |      variables.
 |      Default: []
 |  
 |  includemissinggroup : boolean, optional
 |      when set to True, missing values are allowed as group-by keys.
 |      Default: False
 |  
 |  code : dict, optional
 |      specifies the settings for generating SAS DATA step scoring code.
 |  
 |      code.linesize : int32, optional
 |          specifies the line size for the generated code.
 |          Default: 120
 |          Note: Value range is 64 <= n <= 254
 |  
 |      code.fmtwdth : int32, optional
 |          specifies the width to use for formatting derived numbers such
 |          as parameter estimates in the DATA step code.
 |          Default: 20
 |          Note: Value range is 0 <= n <= 32
 |  
 |      code.indentsize : int32, optional
 |          specifies the number of spaces to indent the DATA step code for
 |          each indent level.
 |          Default: 3
 |          Note: Value range is 0 <= n <= 10
 |  
 |      code.labelid : int32, optional
 |          specifies the label ID to use in array names and statement
 |          labels in the DATA step code. By default, a random positive
 |          integer is used.
 |          Default: 0
 |  
 |      code.notrim : boolean, optional
 |          requests that the comparison of variables with formatted values
 |          be based on the full format width, with padding. By default,
 |          leading and trailing blanks are removed from the formatted
 |          values.
 |          Default: False
 |  
 |      code.comment : boolean, optional
 |          when set to True, adds comments to the DATA step code.
 |          Default: False
 |  
 |      code.tabform : boolean, optional
 |          Table format
 |          Default: False
 |  
 |  sasvarnamelength : boolean, optional
 |      when set to True, the lengths of the names of the output variables
 |      are constrained to be less than or equal 32 characters.
 |      Default: False
 |  
 |  casout : dict or CASTable, optional
 |      scores the input table and saves the scoring results as a table.
 |  
 |      casout.name : string or CASTable, optional
 |          specifies the name to associate with the table.
 |  
 |      casout.caslib : string, optional
 |          specifies the name of the caslib to use.
 |  
 |      casout.timestamp : string, optional
 |          specifies the timestamp to apply to the table. Specify the value
 |          in the form that is appropriate for your session locale.
 |  
 |      casout.compress : boolean, optional
 |          when set to True, data compression is applied to the table.
 |          Default: False
 |  
 |      casout.replace : boolean, optional
 |          specifies whether to overwrite an existing table with the same
 |          name.
 |          Default: False
 |  
 |      casout.replication : int32, optional
 |          specifies the number of copies of the table to make for fault
 |          tolerance. Larger values result in slower performance and use
 |          more memory, but provide high availability for data in the event
 |          of a node failure.
 |          Default: 1
 |          Note: Value range is 0 <= n < 2147483647
 |  
 |      casout.label : string, optional
 |          specifies the descriptive label to associate with the table.
 |  
 |      casout.maxmemsize : int64, optional
 |          specifies the maximum amount of physical memory, in bytes, to
 |          allocate for the table. After this threshold is reached, the
 |          server uses temporary files and operating system facilities for
 |          memory management.
 |          Default: 0
 |  
 |      casout.promote : boolean, optional
 |          when set to True, the output table is added with a global scope.
 |          This enables other sessions to access the table, subject to
 |          access controls. The target caslib must also have a global scope.
 |          Default: False
 |  
 |      casout.ondemand : boolean, optional
 |          when set to True, table access is less aggressive with virtual
 |          memory use.
 |          Default: True
 |  
 |  casoutimputeinformation : dict or CASTable, optional
 |      specifies the settings for an output table that includes information
 |      about the results of the impute action.
 |  
 |      casoutimputeinformation.name : string or CASTable, optional
 |          specifies the name to associate with the table.
 |  
 |      casoutimputeinformation.caslib : string, optional
 |          specifies the name of the caslib to use.
 |  
 |      casoutimputeinformation.timestamp : string, optional
 |          specifies the timestamp to apply to the table. Specify the value
 |          in the form that is appropriate for your session locale.
 |  
 |      casoutimputeinformation.compress : boolean, optional
 |          when set to True, data compression is applied to the table.
 |          Default: False
 |  
 |      casoutimputeinformation.replace : boolean, optional
 |          specifies whether to overwrite an existing table with the same
 |          name.
 |          Default: False
 |  
 |      casoutimputeinformation.replication : int32, optional
 |          specifies the number of copies of the table to make for fault
 |          tolerance. Larger values result in slower performance and use
 |          more memory, but provide high availability for data in the event
 |          of a node failure.
 |          Default: 1
 |          Note: Value range is 0 <= n < 2147483647
 |  
 |      casoutimputeinformation.label : string, optional
 |          specifies the descriptive label to associate with the table.
 |  
 |      casoutimputeinformation.maxmemsize : int64, optional
 |          specifies the maximum amount of physical memory, in bytes, to
 |          allocate for the table. After this threshold is reached, the
 |          server uses temporary files and operating system facilities for
 |          memory management.
 |          Default: 0
 |  
 |      casoutimputeinformation.promote : boolean, optional
 |          when set to True, the output table is added with a global scope.
 |          This enables other sessions to access the table, subject to
 |          access controls. The target caslib must also have a global scope.
 |          Default: False
 |  
 |      casoutimputeinformation.ondemand : boolean, optional
 |          when set to True, table access is less aggressive with virtual
 |          memory use.
 |          Default: True
 |  
 |  includeinputvars : boolean, optional
 |      when set to True, the analysis variables from the input table that
 |      are specified in the vars parameter are copied to the output table.
 |      Default: False
 |  
 |  copyallvars : boolean, optional
 |      when set to True, all the variables from the input table are copied
 |      to the scored output table.
 |      Default: False
 |  
 |  outvarsnameprefix : string, optional
 |      specifies a prefix to apply to the names of output variables. If a
 |      variable named 'x' results in a new variable, the generated name is
 |      <prefix>_x_<suffix>. You can use this parameter and the suffix
 |      parameter at the same time.
 |      Default: imp
 |  
 |  outvarsnamesuffix : string, optional
 |      specifies a suffix to apply to the names of output variables. If a
 |      variable named 'x' results in a new variable, the generated name is
 |      <prefix>_x_<suffix>. You can use this parameter and the prefix
 |      parameter at the same time.
 |      Default: 
 |  
 |  copyvars : list of strings, optional
 |      specifies the names of variables in the input table to use for
 |      identifying scored observations in the output table. The specified
 |      variables are copied to the output table.
 |      Default: []
 |  
 |  forcemissingcount : boolean, optional
 |      when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |      specified, the server returns the row count and missing count. This
 |      is done even if it requires an additional pass through the data.
 |      Leaving it False is efficient for large tables.
 |      Default: False
 |  
 |  outputtableoptions : dict, optional
 |      specifies options for result tables. You can specify which result
 |      tables the server returns and how group-by results are handled.
 |  
 |      outputtableoptions.tablenames : list, optional
 |          specifies the names of result tables to generate. By default,
 |          all result tables are returned.
 |          Default: []
 |  
 |      outputtableoptions.forcetablereturn : boolean, optional
 |          when set to True, result tables are returned to the client even
 |          if the output is also saved as an output table.
 |          Default: False
 |  
 |  Returns
 |  -------
 |  Impute object
 |  
 |  Method resolution order:
 |      datapreprocess.Impute
 |      CASAction
 |      swat.cas.utils.params.ParamManager
 |      builtins.object
 |  
 |  Methods defined here:
 |  
 |  __call__(_self_, table=None, methodcontinuous=None, methodnominal=None, inputs=None, nnominalvars=None, nominalvarsindices=None, freq=None, weight=None, seed=None, minrandom=None, maxrandom=None, percentiledefinition=None, percentilemaxiterations=None, percentiletolerance=None, valuescontinuous=None, valuesnominal=None, includemissinggroup=None, code=None, sasvarnamelength=None, casout=None, casoutimputeinformation=None, includeinputvars=None, copyallvars=None, outvarsnameprefix=None, outvarsnamesuffix=None, copyvars=None, forcemissingcount=None, outputtableoptions=None, **kwargs)
 |      Performs data matrix (variable) imputation
 |      
 |      Parameters
 |      ----------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      CASResults object
 |  
 |  __init__(_self_, table=None, methodcontinuous=None, methodnominal=None, inputs=None, nnominalvars=None, nominalvarsindices=None, freq=None, weight=None, seed=None, minrandom=None, maxrandom=None, percentiledefinition=None, percentilemaxiterations=None, percentiletolerance=None, valuescontinuous=None, valuesnominal=None, includemissinggroup=None, code=None, sasvarnamelength=None, casout=None, casoutimputeinformation=None, includeinputvars=None, copyallvars=None, outvarsnameprefix=None, outvarsnamesuffix=None, copyvars=None, forcemissingcount=None, outputtableoptions=None, **kwargs)
 |      Performs data matrix (variable) imputation
 |      
 |      Parameters
 |      ----------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      Impute object
 |  
 |  get_param(_self_, key)
 |      Get the value of an action parameter
 |      
 |      Parameters
 |      ----------
 |      key : string
 |          The fully-qualified name (e.g., table.name) of the parameter to retrieve.
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      any
 |          The value of the speciifed parameter.
 |  
 |  get_params(_self_, *keys)
 |      Get the value of one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          The fully-qualified names (e.g., table.name) of the parameters to retrieve.
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      dict
 |          A dictionary of key value pairs containing the requested parameters.
 |  
 |  set_param(_self_, *args, **kwargs)
 |      Set one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *args : string / any pairs, optional
 |          Parameters can be specified as fully-qualified names (e.g, table.name)
 |          and values as subsequent arguments.  Any number of name / any pairs
 |          can be specified.
 |      **kwargs : any, optional
 |          Parameters can be specified as any number of keyword arguments.
 |      
 |      Examples
 |      --------
 |      #
 |      # String / any pairs
 |      #
 |      > summ = s.simple.Sumamry()
 |      > summ.set_param('table.name', 'iris',
 |                       'table.singlepass', True,
 |                       'casout.name', 'iris_summary')
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_summary'})
 |      
 |      #
 |      # Keywords
 |      #
 |      > summ.set_param(casout=dict(name='iris_out'))
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_out'})
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  set_params(_self_, *args, **kwargs)
 |      Set one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *args : string / any pairs, optional
 |          Parameters can be specified as fully-qualified names (e.g, table.name)
 |          and values as subsequent arguments.  Any number of name / any pairs
 |          can be specified.
 |      **kwargs : any, optional
 |          Parameters can be specified as any number of keyword arguments.
 |      
 |      Examples
 |      --------
 |      #
 |      # String / any pairs
 |      #
 |      > summ = s.simple.Sumamry()
 |      > summ.set_param('table.name', 'iris',
 |                       'table.singlepass', True,
 |                       'casout.name', 'iris_summary')
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_summary'})
 |      
 |      #
 |      # Keywords
 |      #
 |      > summ.set_param(casout=dict(name='iris_out'))
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_out'})
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the table name, caslib, and other common parameters.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.groupby : list of dicts, optional
 |              specifies the names of the variables to use for grouping
 |              results.
 |      
 |              table.groupby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.groupby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.groupby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.groupby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.groupby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.groupby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.orderby : list of dicts, optional
 |              specifies the variables to use for ordering observations within
 |              partitions. This parameter applies to partitioned tables or it
 |              can be combined with groupBy variables when groupByMode is set to
 |              REDISTRIBUTE.
 |      
 |              table.orderby[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.orderby[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.orderby[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.orderby[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.orderby[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.orderby[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.groupbymode : string, optional
 |              specifies how the server creates groups.
 |              Default: NOSORT
 |              Values: NOSORT, REDISTRIBUTE
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      methodcontinuous : string, optional
 |          specifies the imputation technique for continuous variables. Be
 |          aware that you can specify numeric variables as nominal using the
 |          nomVarsIndices parameter.
 |          Default: MEAN
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      methodnominal : string, optional
 |          specifies the imputation technique for nominal variables.
 |          Default: MODE
 |          Values: MAX, MEAN, MEDIAN, MIDRANGE, MIN, MODE, RANDOM, VALUE
 |      
 |      inputs : list of dicts, optional
 |          specifies the variables to use for the analysis. You can specify a
 |          subset of the variables from the input table.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nnominalvars : int32, optional
 |          specifies to treat the last nNomVars variables as nominal if you do
 |          not provide a value for the nomVarsIndices parameter.
 |          Default: 0
 |          Note: Value range is 0 < n < 2147483647
 |      
 |      nominalvarsindices : list, optional
 |          specifies the indices of the variables to treat as nominal
 |          variables.
 |          Default: []
 |          Note: Value range is 0 < n < inf
 |      
 |      freq : string, optional
 |          specifies the frequency variable.
 |      
 |      weight : string, optional
 |          specifies the weight variable.
 |      
 |      seed : int32, optional
 |          specifies a seed value. The seed is used to generate random values.
 |          Default: 0
 |      
 |      minrandom : double, optional
 |          specifies the minimum random number to generate.
 |          Default: 0.0
 |      
 |      maxrandom : double, optional
 |          specifies the maximum random number to generate.
 |          Default: 0.0
 |      
 |      percentiledefinition : int32, optional
 |          specifies the percentile definition to use. The definitions are
 |          numbered 1 to 5. The default value, 0, specifies not to use a
 |          percentile definition.
 |          Default: 6
 |          Note: Value range is 1 <= n <= 6
 |      
 |      percentilemaxiterations : int32, optional
 |          specifies the maximum number of iterations for percentile
 |          computation.
 |          Default: 0
 |      
 |      percentiletolerance : double, optional
 |          specifies the tolerance for percentile computation.
 |          Default: 1e-05
 |      
 |      valuescontinuous : list, optional
 |          specifies a list of double values for imputation for the continuous
 |          variables.
 |          Default: []
 |      
 |      valuesnominal : list, optional
 |          specifies a list of string values for imputation for the nominal
 |          variables.
 |          Default: []
 |      
 |      includemissinggroup : boolean, optional
 |          when set to True, missing values are allowed as group-by keys.
 |          Default: False
 |      
 |      code : dict, optional
 |          specifies the settings for generating SAS DATA step scoring code.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      sasvarnamelength : boolean, optional
 |          when set to True, the lengths of the names of the output variables
 |          are constrained to be less than or equal 32 characters.
 |          Default: False
 |      
 |      casout : dict or CASTable, optional
 |          scores the input table and saves the scoring results as a table.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      casoutimputeinformation : dict or CASTable, optional
 |          specifies the settings for an output table that includes information
 |          about the results of the impute action.
 |      
 |          casoutimputeinformation.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casoutimputeinformation.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casoutimputeinformation.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casoutimputeinformation.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casoutimputeinformation.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casoutimputeinformation.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casoutimputeinformation.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casoutimputeinformation.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casoutimputeinformation.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casoutimputeinformation.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      includeinputvars : boolean, optional
 |          when set to True, the analysis variables from the input table that
 |          are specified in the vars parameter are copied to the output table.
 |          Default: False
 |      
 |      copyallvars : boolean, optional
 |          when set to True, all the variables from the input table are copied
 |          to the scored output table.
 |          Default: False
 |      
 |      outvarsnameprefix : string, optional
 |          specifies a prefix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the suffix
 |          parameter at the same time.
 |          Default: imp
 |      
 |      outvarsnamesuffix : string, optional
 |          specifies a suffix to apply to the names of output variables. If a
 |          variable named 'x' results in a new variable, the generated name is
 |          <prefix>_x_<suffix>. You can use this parameter and the prefix
 |          parameter at the same time.
 |          Default: 
 |      
 |      copyvars : list of strings, optional
 |          specifies the names of variables in the input table to use for
 |          identifying scored observations in the output table. The specified
 |          variables are copied to the output table.
 |          Default: []
 |      
 |      forcemissingcount : boolean, optional
 |          when set to True, techForCont is VALUE or RANDOM, and casOut is not
 |          specified, the server returns the row count and missing count. This
 |          is done even if it requires an additional pass through the data.
 |          Leaving it False is efficient for large tables.
 |          Default: False
 |      
 |      outputtableoptions : dict, optional
 |          specifies options for result tables. You can specify which result
 |          tables the server returns and how group-by results are handled.
 |      
 |          outputtableoptions.tablenames : list, optional
 |              specifies the names of result tables to generate. By default,
 |              all result tables are returned.
 |              Default: []
 |      
 |          outputtableoptions.forcetablereturn : boolean, optional
 |              when set to True, result tables are returned to the client even
 |              if the output is also saved as an output table.
 |              Default: False
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |  
 |  all_params = {'casout', 'casout.caslib', 'casout.compress', 'casout.la...
 |  
 |  param_names = ['table', 'methodcontinuous', 'methodnominal', 'inputs',...
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from CASAction:
 |  
 |  __iter__(self)
 |      Call the action and iterate over the results
 |  
 |  invoke(self, **kwargs)
 |      Invoke the action
 |      
 |      Parameters
 |      ----------
 |      **kwargs : any, optional
 |          Arbitrary key/value pairs to add to the arguments sent to the
 |          action.  These key/value pairs are not added to the collection
 |          of parameters set on the action object.  They are only used in
 |          this call.
 |      
 |      Returns
 |      -------
 |      self
 |          Returns the CASAction object itself
 |  
 |  retrieve = __call__(self, **kwargs)
 |      Call the action
 |      
 |      Parameters
 |      ----------
 |      **kwargs : any, optional
 |          Arbitrary key/value pairs to add to the arguments sent to the
 |          action.  These key/value pairs are not added to the collection
 |          of parameters set on the action object.  They are only used in
 |          this call.
 |      
 |      Returns
 |      -------
 |      CASResults object
 |          Collection of results from the action call
 |  
 |  ----------------------------------------------------------------------
 |  Class methods inherited from CASAction:
 |  
 |  from_reflection(asname, actinfo, connection) from builtins.type
 |      Construct a CASAction class from reflection information
 |      
 |      Parameters
 |      ----------
 |      asname : string
 |          The action set name
 |      actinfo : dict
 |          The reflection information for the action
 |      connection : CAS object
 |          The connection to associate with the CASAction
 |      defaults : dict
 |          Default parameters for the action
 |      
 |      Returns
 |      -------
 |      CASAction class
 |  
 |  get_connection() from builtins.type
 |      Return the registered connection
 |      
 |      The connection is only held by a weak reference.  If the
 |      connection no longer exists, a SWATError is raised.
 |      
 |      Raises
 |      ------
 |      SWATError
 |          If the registered connection no longer exists
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from CASAction:
 |  
 |  trait_names = None
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from swat.cas.utils.params.ParamManager:
 |  
 |  __delattr__(self, name)
 |      Delete an attribute
 |  
 |  __enter__(self)
 |  
 |  __exit__(self, type, value, traceback)
 |  
 |  __getattr__(self, name)
 |      Get named attribute
 |  
 |  __repr__(self)
 |      Return repr(self).
 |  
 |  __setattr__(self, name, value)
 |      Set an attribute
 |  
 |  __str__(self)
 |      Return str(self).
 |  
 |  del_param = del_params(self, *keys)
 |      Delete parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : strings
 |         Names of parameters to delete
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  del_params(self, *keys)
 |      Delete parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : strings
 |         Names of parameters to delete
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  has_param = has_params(self, *keys)
 |      Return a boolean indicating whether or not the parameters exist
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          Names of parameters
 |      
 |      Returns
 |      -------
 |      True or False
 |  
 |  has_params(self, *keys)
 |      Return a boolean indicating whether or not the parameters exist
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          Names of parameters
 |      
 |      Returns
 |      -------
 |      True or False
 |  
 |  to_dict(self)
 |      Return the parameters as a dictionary
 |  
 |  to_json(self, *args, **kwargs)
 |      Convert parameters to JSON
 |      
 |      Parameters
 |      ----------
 |      *args : any, optional
 |          Additional arguments to json.dumps
 |      **kwargs : any, optional
 |          Additional arguments to json.dumps
 |      
 |      Returns
 |      -------
 |      string
 |  
 |  to_params = to_dict(self)
 |      Return the parameters as a dictionary
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from swat.cas.utils.params.ParamManager:
 |  
 |  __dict__
 |      dictionary for instance variables (if defined)
 |  
 |  __weakref__
 |      list of weak references to the object (if defined)

What I need to do is in an actionset that's not loaded, how do I see all available actionsets?


In [5]:
# list all of the actionsets, whether they are loaded or not
s.builtins.actionSetInfo(all = True)


Out[5]:
§ setinfo
Action set information
actionset label loaded extension build_time portdate
0 access 0 tkacon 2016-09-07 18:41:50 V.03.01M0P09072016
1 accessControl Access Controls 1 casmeta 2016-09-07 18:41:50 V.03.01M0P09072016
2 aggregation 0 tkcasagg 2016-09-07 18:41:47 V.03.01M0P09072016
3 astore 0 astore 2016-09-07 17:51:14 V.03.01M0P09072016
4 autotune 0 optminer 2016-09-07 19:33:09 V.03.01M0P09072016
5 boolRule 0 casblr 2016-09-07 19:00:58 V.03.01M0P09072016
6 builtins System 1 tkcasablt 2016-09-07 18:41:50 V.03.01M0P09072016
7 cardinality 0 cardinality 2016-09-16 08:50:17 V.03.01M0P09072016
8 clustering 0 tkcaskclus 2016-09-07 17:51:17 V.03.01M0P09072016
9 configuration Server Properties 1 tkcascfg 2016-09-07 18:41:47 V.03.01M0P09072016
10 dataPreprocess Data Preprocess 1 tktrans 2016-09-07 18:41:49 V.03.01M0P09072016
11 dataStep DATA Step 1 datastep 2016-09-07 18:41:27 V.03.01M0P09072016
12 decisionTree 0 tkcasdt 2016-09-07 18:41:49 V.03.01M0P09072016
13 ds2 0 casds2 2016-09-07 19:27:58 V.03.01M0P09072016
14 factmac 0 tkfactmac 2016-09-07 17:51:15 V.03.01M0P09072016
15 fedSql 0 casfedsql 2016-09-07 19:27:58 V.03.01M0P09072016
16 hiddenMarkovModel 0 hmm 2016-09-07 18:12:07 V.03.01M0P09072016
17 hyperGroup 0 tkhypgrp 2016-09-07 18:41:47 V.03.01M0P09072016
18 image 0 tkimage 2016-09-07 17:51:10 V.03.01M0P09072016
19 loadStreams 0 espact 2016-09-07 18:41:49 V.03.01M0P09072016
20 midTierServices 0 mtpsrvc 2016-09-07 18:12:18 V.03.01M0P09072016
21 network Network 0 networkcommon 2016-09-07 19:27:44 V.03.01M0P09072016
22 network Network 0 networksocial 2016-09-07 19:27:44 V.03.01M0P09072016
23 neuralNet 0 tkcasann 2016-09-07 18:41:49 V.03.01M0P09072016
24 nonlinear 0 nlmcas 2016-09-07 17:51:15 V.03.01M0P09072016
25 panel 0 Panel 2016-09-07 17:51:13 V.03.01M0P09072016
26 pca 0 tkpca 2016-09-07 17:51:18 V.03.01M0P09072016
27 percentile Percentile 1 tkcasptl 2016-09-07 18:41:49 V.03.01M0P09072016
28 pls 0 pls 2016-09-07 17:51:13 V.03.01M0P09072016
29 quantreg 0 rqscas 2016-09-07 17:51:13 V.03.01M0P09072016
30 recommend 0 tkrecom 2016-09-07 18:41:49 V.03.01M0P09072016
31 regression 0 regcas 2016-09-14 13:28:39 V.03.01M0P09072016
32 sampling 0 tkcassamp 2016-09-07 17:51:16 V.03.01M0P09072016
33 search Search 1 casidx 2016-09-07 18:12:22 V.03.01M0P09072016
34 sentimentAnalysis 0 cassent 2016-09-07 18:12:22 V.03.01M0P09072016
35 sequence 0 tksequ 2016-09-07 18:41:47 V.03.01M0P09072016
36 session Session Methods 1 tkcsessn 2016-09-07 18:41:49 V.03.01M0P09072016
37 sessionProp Session Properties 1 tkcstate 2016-09-07 18:41:49 V.03.01M0P09072016
38 sgComp 0 sgcomp 2016-09-07 17:51:12 V.03.01M0P09072016
39 simple Analytics 1 tkimstat 2016-09-07 18:41:49 V.03.01M0P09072016
40 svm 0 tkaasvm 2016-09-07 17:51:17 V.03.01M0P09072016
41 table Tables 1 tkcastab 2016-09-13 12:24:04 V.03.01M0P09072016
42 textMining 0 castmine 2016-09-07 19:00:58 V.03.01M0P09072016
43 textParse 0 casparse 2016-09-07 18:12:21 V.03.01M0P09072016
44 transpose 0 castranspose 2016-09-07 17:51:11 V.03.01M0P09072016
45 varReduce 0 tkaareduce 2016-09-07 17:51:16 V.03.01M0P09072016
46 copula CAS Copula Simulation Action Library 0 copula 2016-09-07 17:51:13 V.03.01M0P09072016
47 panel Panel Data 0 panel 2016-09-07 17:51:13 V.03.01M0P09072016
48 cmpcas 0 cmpcas 2016-09-07 18:45:26 V.03.01M0P09072016
49 casfors Simple forecast service 0 casfors 2016-09-07 17:51:18 V.03.01M0P09072016
50 tkovrd Forecast override 0 tkovrd 2016-09-07 17:51:14 V.03.01M0P09072016
51 mdchoice MDCHOICE CAS Action Library 0 mdchoice 2016-09-07 17:51:13 V.03.01M0P09072016
52 localsearch Local Search Optimization 0 localsearch 2016-09-07 19:33:08 V.03.01M0P09072016
53 optimization Optimization 0 optimization 2016-09-07 19:33:09 V.03.01M0P09072016
54 qlimreg QLIMREG CAS Action Library 0 qlimreg 2016-09-07 18:12:07 V.03.01M0P09072016
55 tkcsestst Session Tests 0 tkcsestst 2016-09-07 18:41:49 V.03.01M0P09072016
56 tkdnn DeepNeural 0 tkdnn 2016-09-07 17:51:13 V.03.01M0P09072016

elapsed 0.193s · user 0.377s · sys 0.337s · mem 0.558MB

Enable help on non previously loaded actionset and list newly available actions


In [6]:
# load in new actionset
s.builtins.loadActionSet('decisionTree')

# get help again
s.help().decisionTree


Out[6]:
name description
0 dtreeTrain Train a decision tree
1 dtreeScore Score a table using a decision tree model
2 dtreeSplit Split decision tree nodes
3 dtreePrune Prune a decision tree
4 dtreeMerge Merge decision tree nodes
5 dtreeCode Generate DATA step scoring code from a decisio...
6 forestTrain Train a forest
7 forestScore Score a table using a forest model
8 forestCode Generate DATA step scoring code from a forest ...
9 gbtreeTrain Train a gradient boosting tree
10 gbtreeScore Score a table using a gradient boosting tree m...
11 gbtreecode Generate DATA step scoring code from a gradien...

Let's see the arguments of a specific action that I now have loaded


In [7]:
help(s.decisionTree.gbtreeTrain)


Help on decisiontree.Gbtreetrain in module swat.cas.actions object:

class decisiontree.Gbtreetrain(CASAction)
 |  Train a gradient boosting tree
 |  
 |  Parameters
 |  ----------
 |  table : dict or CASTable
 |      specifies the settings for an input table.
 |  
 |      table.name : string or CASTable
 |          specifies the name of the table to use.
 |  
 |      table.caslib : string, optional
 |          specifies the caslib containing the table that you want to use
 |          with the action. By default, the active caslib is used. Specify a
 |          value only if you need to access a table from a different caslib.
 |  
 |      table.where : string, optional
 |          specifies an expression for subsetting the input data.
 |  
 |      table.computedvars : list of dicts, optional
 |          specifies the names of the computed variables to create. Specify
 |          an expression for each variable in the computedVarsProgram
 |          parameter.
 |  
 |          table.computedvars[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.computedvars[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.computedvars[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.computedvars[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.computedvars[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.computedvars[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |      table.computedvarsprogram : string, optional
 |          specifies an expression for each computed variable that you
 |          include in the computedVars parameter.
 |  
 |      table.computedondemand : boolean, optional
 |          when set to True, the computed variables are created when the
 |          table is loaded instead of when the action begins.
 |          Default: False
 |  
 |      table.singlepass : boolean, optional
 |          when set to True, the data does not create a transient table in
 |          the server. Setting this parameter to True can be efficient, but
 |          the data might not have stable ordering upon repeated runs.
 |          Default: False
 |  
 |      table.importoptions : dict, optional
 |          specifies the settings for reading a table from a data source.
 |  
 |          table.importoptions.filetype : string
 |              Default: auto
 |              Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                      esp, lasr, basesas, mva, xls, fmt
 |  
 |      table.ondemand : boolean, optional
 |          when set to True, table access is less aggressive with virtual
 |          memory use.
 |          Default: True
 |  
 |      table.vars : list of dicts, optional
 |          specifies the variables to use in the action.
 |  
 |          table.vars[*].name : string
 |              specifies the name for the variable.
 |  
 |          table.vars[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |  
 |          table.vars[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |  
 |          table.vars[*].format : string, optional
 |              specifies the format to apply to the variable.
 |  
 |          table.vars[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |  
 |          table.vars[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |  
 |  target : string
 |      specifies the target or response variable for training the decision
 |      tree. If the variable is numeric, but not specified in normal=, and
 |      nbinstarget= is not specified, then a regression tree is trained.
 |  
 |  inputs : list of dicts
 |      specifies the input variables to use in the analysis.
 |  
 |      inputs[*].name : string
 |          specifies the name for the variable.
 |  
 |      inputs[*].label : string, optional
 |          specifies the descriptive label for the variable.
 |  
 |      inputs[*].formattedlength : int32, optional
 |          specifies the format field length plus the format precision
 |          length.
 |          Default: 0
 |  
 |      inputs[*].format : string, optional
 |          specifies the format to apply to the variable.
 |  
 |      inputs[*].nfl : int32, optional
 |          specifies the format field length.
 |          Default: 0
 |  
 |      inputs[*].nfd : int32, optional
 |          specifies the format precision length.
 |          Default: 0
 |  
 |  nominals : list of dicts, optional
 |      specifies the nominal input variables to use in the analysis.
 |  
 |      nominals[*].name : string
 |          specifies the name for the variable.
 |  
 |      nominals[*].label : string, optional
 |          specifies the descriptive label for the variable.
 |  
 |      nominals[*].formattedlength : int32, optional
 |          specifies the format field length plus the format precision
 |          length.
 |          Default: 0
 |  
 |      nominals[*].format : string, optional
 |          specifies the format to apply to the variable.
 |  
 |      nominals[*].nfl : int32, optional
 |          specifies the format field length.
 |          Default: 0
 |  
 |      nominals[*].nfd : int32, optional
 |          specifies the format precision length.
 |          Default: 0
 |  
 |  attributes : list of dicts, optional
 |      specifies temporary attributes, such as a format, to apply to input
 |      variables.
 |  
 |      attributes[*].name : string
 |          specifies the name for the variable.
 |  
 |      attributes[*].label : string, optional
 |          specifies the descriptive label for the variable.
 |  
 |      attributes[*].formattedlength : int32, optional
 |          specifies the format field length plus the format precision
 |          length.
 |          Default: 0
 |  
 |      attributes[*].format : string, optional
 |          specifies the format to apply to the variable.
 |  
 |      attributes[*].nfl : int32, optional
 |          specifies the format field length.
 |          Default: 0
 |  
 |      attributes[*].nfd : int32, optional
 |          specifies the format precision length.
 |          Default: 0
 |  
 |  nbins : int32, optional
 |      specifies the number of bins to use for numeric variables in the
 |      calculation of the decision tree.
 |      Default: 20
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  maxlevel : int32, optional
 |      specifies the maximum number of the tree level.
 |      Default: 6
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  maxbranch : int32, optional
 |      specifies the maximum number of children (branches) allowed for each
 |      level of the tree.
 |      Default: 2
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  leafsize : int32, optional
 |      specifies the minimum number of observations on each node.
 |      Default: 5
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  missing : string, optional
 |      specifies the missing policy to handle missing values.
 |      Default: MACSMALL
 |      Values: MACSMALL, USEINSEARCH
 |  
 |  minuseinsearch : int32, optional
 |      specifies a threshold for utilizing missing values in the split
 |      search when the missing parameter is set to USEINSEARCH. If the
 |      number of observations in which the splitting variable has missing
 |      values in a node is greater than or equal to the specified value,
 |      then the action initiates the USEINSEARCH policy. Otherwise, the
 |      missing values are assigned to a popular branch.
 |      Default: 1
 |  
 |  greedy : boolean, optional
 |      by default, a greedy search or exhaustive search is used to
 |      determine the best split for each variable of each tree node. When
 |      set to False, a fast and efficient algorithm that is based on
 |      clustering is applied. Setting this parameter to False is recommended
 |      for variables with high cardinality.
 |      Default: True
 |  
 |  binorder : boolean, optional
 |      by default, the bin order is preserved for numeric variables. When
 |      set to False, the bin order is ignored for numeric variables.
 |      Default: True
 |  
 |  varimp : boolean, optional
 |      specifies whether the variable importance information is generated.
 |      The importance value is determined by the total Gini reduction.
 |      Default: False
 |  
 |  code : dict, optional
 |      requests that the action produce SAS score code. Specify additional
 |      parameters.
 |  
 |      code.linesize : int32, optional
 |          specifies the line size for the generated code.
 |          Default: 120
 |          Note: Value range is 64 <= n <= 254
 |  
 |      code.fmtwdth : int32, optional
 |          specifies the width to use for formatting derived numbers such
 |          as parameter estimates in the DATA step code.
 |          Default: 20
 |          Note: Value range is 0 <= n <= 32
 |  
 |      code.indentsize : int32, optional
 |          specifies the number of spaces to indent the DATA step code for
 |          each indent level.
 |          Default: 3
 |          Note: Value range is 0 <= n <= 10
 |  
 |      code.labelid : int32, optional
 |          specifies the label ID to use in array names and statement
 |          labels in the DATA step code. By default, a random positive
 |          integer is used.
 |          Default: 0
 |  
 |      code.notrim : boolean, optional
 |          requests that the comparison of variables with formatted values
 |          be based on the full format width, with padding. By default,
 |          leading and trailing blanks are removed from the formatted
 |          values.
 |          Default: False
 |  
 |      code.comment : boolean, optional
 |          when set to True, adds comments to the DATA step code.
 |          Default: False
 |  
 |      code.tabform : boolean, optional
 |          Table format
 |          Default: False
 |  
 |  modelid : string, optional
 |      specifies the model ID variable name to use when generating SAS
 |      score code. By default, DT_ is prefixed to the target variable name.
 |  
 |  casout : dict or CASTable, optional
 |      specifies the table to store the decision tree model in. When not
 |      specified, a random name is generated.
 |  
 |      casout.name : string or CASTable, optional
 |          specifies the name to associate with the table.
 |  
 |      casout.caslib : string, optional
 |          specifies the name of the caslib to use.
 |  
 |      casout.timestamp : string, optional
 |          specifies the timestamp to apply to the table. Specify the value
 |          in the form that is appropriate for your session locale.
 |  
 |      casout.compress : boolean, optional
 |          when set to True, data compression is applied to the table.
 |          Default: False
 |  
 |      casout.replace : boolean, optional
 |          specifies whether to overwrite an existing table with the same
 |          name.
 |          Default: False
 |  
 |      casout.replication : int32, optional
 |          specifies the number of copies of the table to make for fault
 |          tolerance. Larger values result in slower performance and use
 |          more memory, but provide high availability for data in the event
 |          of a node failure.
 |          Default: 1
 |          Note: Value range is 0 <= n < 2147483647
 |  
 |      casout.label : string, optional
 |          specifies the descriptive label to associate with the table.
 |  
 |      casout.maxmemsize : int64, optional
 |          specifies the maximum amount of physical memory, in bytes, to
 |          allocate for the table. After this threshold is reached, the
 |          server uses temporary files and operating system facilities for
 |          memory management.
 |          Default: 0
 |  
 |      casout.promote : boolean, optional
 |          when set to True, the output table is added with a global scope.
 |          This enables other sessions to access the table, subject to
 |          access controls. The target caslib must also have a global scope.
 |          Default: False
 |  
 |      casout.ondemand : boolean, optional
 |          when set to True, table access is less aggressive with virtual
 |          memory use.
 |          Default: True
 |  
 |  mergebin : boolean, optional
 |      by default, when the largest value in one bin matches the lowest
 |      value in a neighboring bin, the values are merged into the lower bin.
 |      When set to False, the action does not try to merge bins.
 |      Default: True
 |  
 |  includemissing : boolean, optional
 |      by default, observations with missing values are included. When set
 |      to False, observations with missing values for the variables used in
 |      the tree model are ignored when scoring.
 |      Default: True
 |  
 |  ntree : int32, optional
 |      specifies the number of trees to create.
 |      Default: 50
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  seed : double, optional
 |      specifies the seed for the random number generator. By default, the
 |      random number stream is based on the computer clock. Negative values
 |      also result in random number streams based on the computer clock. If
 |      you want a reproducible random number sequence between runs, specify
 |      a value that is greater than zero.
 |      Default: 0.0
 |      Note: Value range is 0.0 <= n <= 2147483647.0
 |  
 |  learningrate : double, optional
 |      specifies the learning rate of each tree.
 |      Default: 0.1
 |      Note: Value range is 0.0 < n <= 1.0
 |  
 |  subsamplerate : double, optional
 |      specifies the fraction of the data to use for building each tree.
 |      Default: 0.5
 |      Note: Value range is 0.0 < n <= 1.0
 |  
 |  distribution : string or int64, optional
 |      specifies the distribution in gradient boosting tree.
 |  
 |  m : int32, optional
 |      specifies the number of input variables to consider for splitting on
 |      a node. The variables are selected at random from the input variables
 |      for each tree. By default, forest uses the square root of the number
 |      of input variables is used, rounded up to the nearest integer. For
 |      gradient boosting tree, the number of input variables is used.
 |      Default: 0
 |      Note: Value range is 1 <= n < 2147483647
 |  
 |  lasso : double, optional
 |      specifies the L1 norm regularization on prediction. The value must
 |      be greater than zero.
 |      Default: 0.0
 |      Note: Value range is 0.0 <= n < max-double
 |  
 |  ridge : double, optional
 |      specifies the L2 norm regularization on prediction. The value must
 |      be greater than zero.
 |      Default: 0.0
 |      Note: Value range is 0.0 <= n < max-double
 |  
 |  singular : double, optional
 |      specifies a small value to avoid zero in division.
 |      Default: 1e-12
 |      Note: Value range is 0.0 <= n < max-double
 |  
 |  Returns
 |  -------
 |  Gbtreetrain object
 |  
 |  Method resolution order:
 |      decisiontree.Gbtreetrain
 |      CASAction
 |      swat.cas.utils.params.ParamManager
 |      builtins.object
 |  
 |  Methods defined here:
 |  
 |  __call__(_self_, table=None, target=None, inputs=None, nominals=None, attributes=None, nbins=None, maxlevel=None, maxbranch=None, leafsize=None, missing=None, minuseinsearch=None, greedy=None, binorder=None, varimp=None, code=None, modelid=None, casout=None, mergebin=None, includemissing=None, ntree=None, seed=None, learningrate=None, subsamplerate=None, distribution=None, m=None, lasso=None, ridge=None, singular=None, **kwargs)
 |      Train a gradient boosting tree
 |      
 |      Parameters
 |      ----------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      CASResults object
 |  
 |  __init__(_self_, table=None, target=None, inputs=None, nominals=None, attributes=None, nbins=None, maxlevel=None, maxbranch=None, leafsize=None, missing=None, minuseinsearch=None, greedy=None, binorder=None, varimp=None, code=None, modelid=None, casout=None, mergebin=None, includemissing=None, ntree=None, seed=None, learningrate=None, subsamplerate=None, distribution=None, m=None, lasso=None, ridge=None, singular=None, **kwargs)
 |      Train a gradient boosting tree
 |      
 |      Parameters
 |      ----------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      Gbtreetrain object
 |  
 |  get_param(_self_, key)
 |      Get the value of an action parameter
 |      
 |      Parameters
 |      ----------
 |      key : string
 |          The fully-qualified name (e.g., table.name) of the parameter to retrieve.
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      any
 |          The value of the speciifed parameter.
 |  
 |  get_params(_self_, *keys)
 |      Get the value of one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          The fully-qualified names (e.g., table.name) of the parameters to retrieve.
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      dict
 |          A dictionary of key value pairs containing the requested parameters.
 |  
 |  set_param(_self_, *args, **kwargs)
 |      Set one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *args : string / any pairs, optional
 |          Parameters can be specified as fully-qualified names (e.g, table.name)
 |          and values as subsequent arguments.  Any number of name / any pairs
 |          can be specified.
 |      **kwargs : any, optional
 |          Parameters can be specified as any number of keyword arguments.
 |      
 |      Examples
 |      --------
 |      #
 |      # String / any pairs
 |      #
 |      > summ = s.simple.Sumamry()
 |      > summ.set_param('table.name', 'iris',
 |                       'table.singlepass', True,
 |                       'casout.name', 'iris_summary')
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_summary'})
 |      
 |      #
 |      # Keywords
 |      #
 |      > summ.set_param(casout=dict(name='iris_out'))
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_out'})
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  set_params(_self_, *args, **kwargs)
 |      Set one or more action parameters
 |      
 |      Parameters
 |      ----------
 |      *args : string / any pairs, optional
 |          Parameters can be specified as fully-qualified names (e.g, table.name)
 |          and values as subsequent arguments.  Any number of name / any pairs
 |          can be specified.
 |      **kwargs : any, optional
 |          Parameters can be specified as any number of keyword arguments.
 |      
 |      Examples
 |      --------
 |      #
 |      # String / any pairs
 |      #
 |      > summ = s.simple.Sumamry()
 |      > summ.set_param('table.name', 'iris',
 |                       'table.singlepass', True,
 |                       'casout.name', 'iris_summary')
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_summary'})
 |      
 |      #
 |      # Keywords
 |      #
 |      > summ.set_param(casout=dict(name='iris_out'))
 |      > print(summ)
 |      ?.simple.Summary(table={'name': 'iris', 'singlepass': True},
 |                       casout={'name': 'iris_out'})
 |      
 |      Valid Parameters
 |      ----------------
 |      table : dict or CASTable
 |          specifies the settings for an input table.
 |      
 |          table.name : string or CASTable
 |              specifies the name of the table to use.
 |      
 |          table.caslib : string, optional
 |              specifies the caslib containing the table that you want to use
 |              with the action. By default, the active caslib is used. Specify a
 |              value only if you need to access a table from a different caslib.
 |      
 |          table.where : string, optional
 |              specifies an expression for subsetting the input data.
 |      
 |          table.computedvars : list of dicts, optional
 |              specifies the names of the computed variables to create. Specify
 |              an expression for each variable in the computedVarsProgram
 |              parameter.
 |      
 |              table.computedvars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.computedvars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.computedvars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.computedvars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.computedvars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.computedvars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |          table.computedvarsprogram : string, optional
 |              specifies an expression for each computed variable that you
 |              include in the computedVars parameter.
 |      
 |          table.computedondemand : boolean, optional
 |              when set to True, the computed variables are created when the
 |              table is loaded instead of when the action begins.
 |              Default: False
 |      
 |          table.singlepass : boolean, optional
 |              when set to True, the data does not create a transient table in
 |              the server. Setting this parameter to True can be efficient, but
 |              the data might not have stable ordering upon repeated runs.
 |              Default: False
 |      
 |          table.importoptions : dict, optional
 |              specifies the settings for reading a table from a data source.
 |      
 |              table.importoptions.filetype : string
 |                  Default: auto
 |                  Values: auto, hdat, csv, delimited, excel, jmp, spss, dta,
 |                          esp, lasr, basesas, mva, xls, fmt
 |      
 |          table.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |          table.vars : list of dicts, optional
 |              specifies the variables to use in the action.
 |      
 |              table.vars[*].name : string
 |                  specifies the name for the variable.
 |      
 |              table.vars[*].label : string, optional
 |                  specifies the descriptive label for the variable.
 |      
 |              table.vars[*].formattedlength : int32, optional
 |                  specifies the format field length plus the format precision
 |                  length.
 |                  Default: 0
 |      
 |              table.vars[*].format : string, optional
 |                  specifies the format to apply to the variable.
 |      
 |              table.vars[*].nfl : int32, optional
 |                  specifies the format field length.
 |                  Default: 0
 |      
 |              table.vars[*].nfd : int32, optional
 |                  specifies the format precision length.
 |                  Default: 0
 |      
 |      target : string
 |          specifies the target or response variable for training the decision
 |          tree. If the variable is numeric, but not specified in normal=, and
 |          nbinstarget= is not specified, then a regression tree is trained.
 |      
 |      inputs : list of dicts
 |          specifies the input variables to use in the analysis.
 |      
 |          inputs[*].name : string
 |              specifies the name for the variable.
 |      
 |          inputs[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          inputs[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          inputs[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          inputs[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          inputs[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nominals : list of dicts, optional
 |          specifies the nominal input variables to use in the analysis.
 |      
 |          nominals[*].name : string
 |              specifies the name for the variable.
 |      
 |          nominals[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          nominals[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          nominals[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          nominals[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          nominals[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      attributes : list of dicts, optional
 |          specifies temporary attributes, such as a format, to apply to input
 |          variables.
 |      
 |          attributes[*].name : string
 |              specifies the name for the variable.
 |      
 |          attributes[*].label : string, optional
 |              specifies the descriptive label for the variable.
 |      
 |          attributes[*].formattedlength : int32, optional
 |              specifies the format field length plus the format precision
 |              length.
 |              Default: 0
 |      
 |          attributes[*].format : string, optional
 |              specifies the format to apply to the variable.
 |      
 |          attributes[*].nfl : int32, optional
 |              specifies the format field length.
 |              Default: 0
 |      
 |          attributes[*].nfd : int32, optional
 |              specifies the format precision length.
 |              Default: 0
 |      
 |      nbins : int32, optional
 |          specifies the number of bins to use for numeric variables in the
 |          calculation of the decision tree.
 |          Default: 20
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxlevel : int32, optional
 |          specifies the maximum number of the tree level.
 |          Default: 6
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      maxbranch : int32, optional
 |          specifies the maximum number of children (branches) allowed for each
 |          level of the tree.
 |          Default: 2
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      leafsize : int32, optional
 |          specifies the minimum number of observations on each node.
 |          Default: 5
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      missing : string, optional
 |          specifies the missing policy to handle missing values.
 |          Default: MACSMALL
 |          Values: MACSMALL, USEINSEARCH
 |      
 |      minuseinsearch : int32, optional
 |          specifies a threshold for utilizing missing values in the split
 |          search when the missing parameter is set to USEINSEARCH. If the
 |          number of observations in which the splitting variable has missing
 |          values in a node is greater than or equal to the specified value,
 |          then the action initiates the USEINSEARCH policy. Otherwise, the
 |          missing values are assigned to a popular branch.
 |          Default: 1
 |      
 |      greedy : boolean, optional
 |          by default, a greedy search or exhaustive search is used to
 |          determine the best split for each variable of each tree node. When
 |          set to False, a fast and efficient algorithm that is based on
 |          clustering is applied. Setting this parameter to False is recommended
 |          for variables with high cardinality.
 |          Default: True
 |      
 |      binorder : boolean, optional
 |          by default, the bin order is preserved for numeric variables. When
 |          set to False, the bin order is ignored for numeric variables.
 |          Default: True
 |      
 |      varimp : boolean, optional
 |          specifies whether the variable importance information is generated.
 |          The importance value is determined by the total Gini reduction.
 |          Default: False
 |      
 |      code : dict, optional
 |          requests that the action produce SAS score code. Specify additional
 |          parameters.
 |      
 |          code.linesize : int32, optional
 |              specifies the line size for the generated code.
 |              Default: 120
 |              Note: Value range is 64 <= n <= 254
 |      
 |          code.fmtwdth : int32, optional
 |              specifies the width to use for formatting derived numbers such
 |              as parameter estimates in the DATA step code.
 |              Default: 20
 |              Note: Value range is 0 <= n <= 32
 |      
 |          code.indentsize : int32, optional
 |              specifies the number of spaces to indent the DATA step code for
 |              each indent level.
 |              Default: 3
 |              Note: Value range is 0 <= n <= 10
 |      
 |          code.labelid : int32, optional
 |              specifies the label ID to use in array names and statement
 |              labels in the DATA step code. By default, a random positive
 |              integer is used.
 |              Default: 0
 |      
 |          code.notrim : boolean, optional
 |              requests that the comparison of variables with formatted values
 |              be based on the full format width, with padding. By default,
 |              leading and trailing blanks are removed from the formatted
 |              values.
 |              Default: False
 |      
 |          code.comment : boolean, optional
 |              when set to True, adds comments to the DATA step code.
 |              Default: False
 |      
 |          code.tabform : boolean, optional
 |              Table format
 |              Default: False
 |      
 |      modelid : string, optional
 |          specifies the model ID variable name to use when generating SAS
 |          score code. By default, DT_ is prefixed to the target variable name.
 |      
 |      casout : dict or CASTable, optional
 |          specifies the table to store the decision tree model in. When not
 |          specified, a random name is generated.
 |      
 |          casout.name : string or CASTable, optional
 |              specifies the name to associate with the table.
 |      
 |          casout.caslib : string, optional
 |              specifies the name of the caslib to use.
 |      
 |          casout.timestamp : string, optional
 |              specifies the timestamp to apply to the table. Specify the value
 |              in the form that is appropriate for your session locale.
 |      
 |          casout.compress : boolean, optional
 |              when set to True, data compression is applied to the table.
 |              Default: False
 |      
 |          casout.replace : boolean, optional
 |              specifies whether to overwrite an existing table with the same
 |              name.
 |              Default: False
 |      
 |          casout.replication : int32, optional
 |              specifies the number of copies of the table to make for fault
 |              tolerance. Larger values result in slower performance and use
 |              more memory, but provide high availability for data in the event
 |              of a node failure.
 |              Default: 1
 |              Note: Value range is 0 <= n < 2147483647
 |      
 |          casout.label : string, optional
 |              specifies the descriptive label to associate with the table.
 |      
 |          casout.maxmemsize : int64, optional
 |              specifies the maximum amount of physical memory, in bytes, to
 |              allocate for the table. After this threshold is reached, the
 |              server uses temporary files and operating system facilities for
 |              memory management.
 |              Default: 0
 |      
 |          casout.promote : boolean, optional
 |              when set to True, the output table is added with a global scope.
 |              This enables other sessions to access the table, subject to
 |              access controls. The target caslib must also have a global scope.
 |              Default: False
 |      
 |          casout.ondemand : boolean, optional
 |              when set to True, table access is less aggressive with virtual
 |              memory use.
 |              Default: True
 |      
 |      mergebin : boolean, optional
 |          by default, when the largest value in one bin matches the lowest
 |          value in a neighboring bin, the values are merged into the lower bin.
 |          When set to False, the action does not try to merge bins.
 |          Default: True
 |      
 |      includemissing : boolean, optional
 |          by default, observations with missing values are included. When set
 |          to False, observations with missing values for the variables used in
 |          the tree model are ignored when scoring.
 |          Default: True
 |      
 |      ntree : int32, optional
 |          specifies the number of trees to create.
 |          Default: 50
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      seed : double, optional
 |          specifies the seed for the random number generator. By default, the
 |          random number stream is based on the computer clock. Negative values
 |          also result in random number streams based on the computer clock. If
 |          you want a reproducible random number sequence between runs, specify
 |          a value that is greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n <= 2147483647.0
 |      
 |      learningrate : double, optional
 |          specifies the learning rate of each tree.
 |          Default: 0.1
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      subsamplerate : double, optional
 |          specifies the fraction of the data to use for building each tree.
 |          Default: 0.5
 |          Note: Value range is 0.0 < n <= 1.0
 |      
 |      distribution : string or int64, optional
 |          specifies the distribution in gradient boosting tree.
 |      
 |      m : int32, optional
 |          specifies the number of input variables to consider for splitting on
 |          a node. The variables are selected at random from the input variables
 |          for each tree. By default, forest uses the square root of the number
 |          of input variables is used, rounded up to the nearest integer. For
 |          gradient boosting tree, the number of input variables is used.
 |          Default: 0
 |          Note: Value range is 1 <= n < 2147483647
 |      
 |      lasso : double, optional
 |          specifies the L1 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      ridge : double, optional
 |          specifies the L2 norm regularization on prediction. The value must
 |          be greater than zero.
 |          Default: 0.0
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      singular : double, optional
 |          specifies a small value to avoid zero in division.
 |          Default: 1e-12
 |          Note: Value range is 0.0 <= n < max-double
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |  
 |  all_params = {'attributes', 'attributes[*].format', 'attributes[*].for...
 |  
 |  param_names = ['table', 'target', 'inputs', 'nominals', 'attributes', ...
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from CASAction:
 |  
 |  __iter__(self)
 |      Call the action and iterate over the results
 |  
 |  invoke(self, **kwargs)
 |      Invoke the action
 |      
 |      Parameters
 |      ----------
 |      **kwargs : any, optional
 |          Arbitrary key/value pairs to add to the arguments sent to the
 |          action.  These key/value pairs are not added to the collection
 |          of parameters set on the action object.  They are only used in
 |          this call.
 |      
 |      Returns
 |      -------
 |      self
 |          Returns the CASAction object itself
 |  
 |  retrieve = __call__(self, **kwargs)
 |      Call the action
 |      
 |      Parameters
 |      ----------
 |      **kwargs : any, optional
 |          Arbitrary key/value pairs to add to the arguments sent to the
 |          action.  These key/value pairs are not added to the collection
 |          of parameters set on the action object.  They are only used in
 |          this call.
 |      
 |      Returns
 |      -------
 |      CASResults object
 |          Collection of results from the action call
 |  
 |  ----------------------------------------------------------------------
 |  Class methods inherited from CASAction:
 |  
 |  from_reflection(asname, actinfo, connection) from builtins.type
 |      Construct a CASAction class from reflection information
 |      
 |      Parameters
 |      ----------
 |      asname : string
 |          The action set name
 |      actinfo : dict
 |          The reflection information for the action
 |      connection : CAS object
 |          The connection to associate with the CASAction
 |      defaults : dict
 |          Default parameters for the action
 |      
 |      Returns
 |      -------
 |      CASAction class
 |  
 |  get_connection() from builtins.type
 |      Return the registered connection
 |      
 |      The connection is only held by a weak reference.  If the
 |      connection no longer exists, a SWATError is raised.
 |      
 |      Raises
 |      ------
 |      SWATError
 |          If the registered connection no longer exists
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes inherited from CASAction:
 |  
 |  trait_names = None
 |  
 |  ----------------------------------------------------------------------
 |  Methods inherited from swat.cas.utils.params.ParamManager:
 |  
 |  __delattr__(self, name)
 |      Delete an attribute
 |  
 |  __enter__(self)
 |  
 |  __exit__(self, type, value, traceback)
 |  
 |  __getattr__(self, name)
 |      Get named attribute
 |  
 |  __repr__(self)
 |      Return repr(self).
 |  
 |  __setattr__(self, name, value)
 |      Set an attribute
 |  
 |  __str__(self)
 |      Return str(self).
 |  
 |  del_param = del_params(self, *keys)
 |      Delete parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : strings
 |         Names of parameters to delete
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  del_params(self, *keys)
 |      Delete parameters
 |      
 |      Parameters
 |      ----------
 |      *keys : strings
 |         Names of parameters to delete
 |      
 |      Returns
 |      -------
 |      None
 |  
 |  has_param = has_params(self, *keys)
 |      Return a boolean indicating whether or not the parameters exist
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          Names of parameters
 |      
 |      Returns
 |      -------
 |      True or False
 |  
 |  has_params(self, *keys)
 |      Return a boolean indicating whether or not the parameters exist
 |      
 |      Parameters
 |      ----------
 |      *keys : one or more strings
 |          Names of parameters
 |      
 |      Returns
 |      -------
 |      True or False
 |  
 |  to_dict(self)
 |      Return the parameters as a dictionary
 |  
 |  to_json(self, *args, **kwargs)
 |      Convert parameters to JSON
 |      
 |      Parameters
 |      ----------
 |      *args : any, optional
 |          Additional arguments to json.dumps
 |      **kwargs : any, optional
 |          Additional arguments to json.dumps
 |      
 |      Returns
 |      -------
 |      string
 |  
 |  to_params = to_dict(self)
 |      Return the parameters as a dictionary
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors inherited from swat.cas.utils.params.ParamManager:
 |  
 |  __dict__
 |      dictionary for instance variables (if defined)
 |  
 |  __weakref__
 |      list of weak references to the object (if defined)


In [8]:
s.session.endsession() # end the session


Out[8]:

elapsed 0.00392s · user 0.000999s · sys 0.003s · mem 0.116MB